Teplomarcet.ru

Про Тепло дома
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

ЦЕМЕНТ ПЦТ I-G-СС-1

ЦЕМЕНТ ПЦТ I-G-СС-1

Цементы LafargeHolcim соответствуют требованиям ГОСТ. На каждом заводе работает отдел контроля качества, который следит за всеми этапами производства цемента. В отдел входят 3 лаборатории для химико-минералогического, физико-механического и экологического анализа продукции.

  • Качественные характеристики ПЦТ I-G-CC-1, Вольский цементный завод
  • Протокол радиационного контроля ПЦТ I-G-CC-1, Вольский цементный завод
  • Сертификат соответствия API, Вольский цементный завод
  • ISO 9001:2015 -сертификат на систему менеджмента качества
  • Certificate of registration API Specification Q1 regiistration NO. Q1- 1519 — сертификат на систему менеджмента качества выданный Американским Институтом Нефти
  • Сертификат соответствия ПЦТ I-G-CC-1, Вольский цементный завод
  • Тампонажные цементы
  • Цемент и сухие смеси
  • Нерудные материалы
  • Укрепление грунтов

LafargeHolcim предлагает цементы, заполнители, товарные бетонные смеси, бетон, а также связанные с ними услуги и решения.
Компания создает универсальные и инновационные с учетом специфических потребностей клиентов для всех направлений строительного бизнеса.

Портландцемент белый без минеральных добавок 1-го сорта по белизне

  • Декоративные изделия и элементы
  • Сухие смеси для финишной отделки
  • Декоративный бетон
  • Коломна

Портландцемент без минеральных добавок на основе клинкера нормированного состава

  • Бетон для инженерных конструкций
  • Сборный железобетон для инженерных конструкций
  • Сборный железобетон для объектов инфраструктуры
  • Ремонтные сухие смеси
  • Коломна
  • Вольск

Портландцемент нормальнотвердеющий (быстротвердеющий)

  • Изделия из ячеистого бетона
  • Товарный бетон и раствор
  • Мелкоштучные изделия
  • Сухие смеси
  • Сборный железобетон
  • Газобетон
  • Коломна
  • Ферзиково
  • Вольск

Портландцемент с известняком до 20%, нормальнотвердеющий (быстротвердеющий)

  • Сборный железобетон
  • Мелкоштучные изделия
  • Сухие смеси
  • Товарный бетон и раствор
  • Коломна
  • Ферзиково
  • Вольск

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, пользовательских данных (сведения о местоположении; тип и версия ОС; тип и версия Браузера; тип устройства и разрешение его экрана; источник откуда пришел на сайт пользователь; язык ОС и Браузера; какие страницы открывает и на какие кнопки нажимает пользователь; ip-адрес) в целях функционирования сайта, проведения статистических исследований и обзоров. Если вы не хотите, чтобы ваши данные обрабатывались, покиньте сайт.

Какой объем бетона может получится из 50 кг цемента?

Какой объем бетона может получится из 50 кг цемента

Выполнить расчет и определить, сколько можно приготовить из мешка цемента бетона, необходимо еще до закупки. На результат влияет множество факторов, ознакомление с которыми поможет получить правильный ответ.

Приготовление бетона

  • Применяемый связующий, его вид, прочность, свежесть. Производитель обязан маркировать свой товар и ставить дату. Продукт, хранившийся на складе более 60 дней, не годится для выполнения качественного бетона.
  • Фасовка и плотность материалов.
  • Соотношение основных элементов в растворе.

Строительная масса – это композиция различных песчано-щебневых ингредиентов, цемента, минеральных частиц и воды. Характер объекта и его назначение определяют пропорции добавляемых веществ. Цемент – это порошок, изготовленный из клинкера и добавок в виде минералов и гипса. На сегодняшний день наиболее востребованным типом считается портландцемент, выпускаемый в двух марках М400, М500.

Перед выполнением расчетной части нужно выяснить расход цемента на куб бетона. Сколько бетона уйдет на весь объект, зависит от составляющих материалов габаритов и требуемых характеристик. Первое что необходимо сделать – это выбрать тип смеси по назначению из таблицы. Каждая марка получается при четком количественном соотношении и имеет свою объемную массу. Информацию о пропорциях и виде используемых ингредиентов рекомендовано брать из специализированного источника.

Применение в зависимости от марки:

Марки и получаемый объем

Второй этап – определение базовой нормы потребления строительной смеси. Для примера возьмем наиболее распространенный портландцемент М400, М500, его расход в таблице:

Класс бетона, щебень 40 ммПотребность, кг/м3
М400М500
В 7,5180158
В 10200176
В 12,5225198
В 15260228
В 20320281
В 22,5350308
В 25380334
В 30340299

Сухой цемент для небольших по объему работ производители запаковывают чаще всего в мешки по 50, 25 кг.

Не для всех создаваемых построек потребление материала одинаково, к тому же вес раствора в зависимости от марки различен, следовательно, необходимо определить, сколько идет кубометров под каждый тип индивидуально.

Потребление раствора для обычных построек – 200 кг/м3, армированных – 220. Плотность, с которой каждая марка бетона ложится в подготовленную форму, в таблице:

Бетон, маркаСреднее потребление в кг/м3
М400М500
100180
150220
200255230
250295260
300330280

Для того чтобы выяснить, сколько кубометров бетона получить с одного 50 кг мешка, с учетом марки, берутся коэффициенты согласно СНИП 82-02-95.

Усредненный объем для:

  • Неармированной постройки: 50 кг / 200 кг/м3 = 0,25 (м3).
  • Армированной: 50 кг / 220 кг/м3 = 0,22 (м3).

Для определения количества бетона получаемого с участием М400 под каждую марку требуется (масса тары/потребление):

  • М100: 50 кг / 180 кг/м3 = 0,28 м3.
Читайте так же:
Ремонтный цементный состав для заполнения 29

Пропорции для других марок:

  • М150: 50/220 = 0,22.
  • М200: 50/255 = 0,2.
  • М250: 50/295 = 0,16.
  • М300: 50/330 = 0,15.

Соотношение компонентов

Узнать объем можно и другим образом, с учетом плотности смеси и на основании ее пропорционального состава.

Соотношение плотности и вида:

ВидУсредненный показатель плотности, кг/м3
Железобетон2400
Бетон тяжелый2500

Для приготовления смеси М250 потребуется узнать пропорции укладки составных элементов, доля песка ≈2 частей, щебня 4 части, приблизительная масса готового раствора с упаковки будет равна 400 кг, имея среднюю плотность железобетона, например, 2400 кг/м3, разделив 400/2400, получим также 0,16 м3, как и в первом варианте расчета.

Состав и пропорции бетонных смесей

Необходимое количество мешков цемента

Если возник вопрос о числе упаковок в одном кубе строительного раствора, расчет будет осуществляться дальше с учетом веса кубометра цемента. Вес связующего из-за его разной плотности и условий хранения может быть неодинаков, в среднем:

  • Свежий, рассыпчатый порошок: 1200 кг/м3.
  • Старый, набравшийся влаги и с комочками: 1600 кг/м3.

Более точный расчет массы цемента: плотность х объем упаковки. С учетом тары в 50 кг: 50/1200=0,042 м3. Нелишним также будет посчитать количество для выполнения всех работ: масса цемента М300 в одном кубометре/объем тары: 0,16/0,04≈4 штуки по 50 кг.

Масса (кг) связующего в одном м3 смеси определяется:

  • Вес одной упаковки 50 кг х 4 штук = 200 кг.

Финишным будет определение требуемого для строительных работ количества мешков. Высчитываем объем основания, например, 3 м3. С использованием М250: емкость в штуках х на площадь: 4 х 3= 12 штук.

Количество цементного состава

Соотношение и количество материала зависит от типа бетона и его состава. В индивидуальном строительстве уровень допустимой ошибки веса порошка – до 1 кг, щебня – до 5, в случае превышения раствор не сможет качественно затвердеть и будет вымываться при попадании на поверхность осадков. Результат чрезмерно увеличенной концентрации цемента – густота и высокая скорость застывания, которая неблагоприятно сказывается на удобстве использования, так как потребует сократить время выполнения работ.

Определившись с исходными данными, осуществить расчеты по вышеприведенным формулам и получить правильный ответ не составит большого труда. Не менее важной процедурой является и закупка материала, упаковка не должна быть повреждена, обязательно присутствие маркировки с указанием вида и срока годности содержимого, так как М500 после 2-3 месячного лежания теряет свою активность и превращается в М400. Убедитесь в правильности хранения: сухое помещение, каждый вид отдельно, для большей защиты от проникновения влаги применяется полиэтилен.

Анализ образования флюидопроявляющих каналов в зацементированном пространстве скважин и мероприятия по обеспечению качественной крепи

Миграция газа в заколонном пространстве (ЗП) или переток газа между отдельными пластами сразу же после закачки в скважину цементного раствора представляет собой очень серьезную проблему, особенно для скважин, вскрывающих пласты с аномально-высоким пластовым давлением (АВПД), расположенных как на суше, так и в море.

Миграция газа в заколонном пространстве (ЗП) или переток газа между отдельными пластами сразу же после закачки в скважину цементного раствора представляет собой очень серьезную проблему, особенно для скважин, вскрывающих пласты с аномально-высоким пластовым давлением (АВПД), расположенных как на суше, так и в море.

Анализом и предотвращением причин возникновения заколонных флюидопроявлений занимаются отечественные и зарубежные исследователи долгие годы.

Авторы [1-7] подразделяют межколонные газопроявления на две группы.

К первой группе отнесены межколонные газопроявления, обусловленные непосредственным поступлением газа из продуктивных горизонтов через цементное кольцо и зазоры между цементным камнем и стенками скважины и обсадных колонн.

Ко второй группе отнесены межколонные газопроявления, связанные с негерметичностью обсадных колонн.

Наибольший интерес представляют вопросы, относящиеся к первой группе, где основные факторы связаны с технологическими и физико-химическими процессами.

Результаты исследований сводятся к следующему:

— темпы водоотдачи цементного раствора и его расширение в наибольшей степени
влияют на снижение давления в цементном столбе;

— выход газа из пласта может начаться задолго до начала схватывания цемента, если цементный раствор имеет большую водоотдачу;

— сокращение объема цементного раствора за счет гидратации (контракция) происходит до начала схватывания цемента.

— Величина сокращения объема колеблется от 0,1 до 0,3%;

— снижение давления в столбе цементного раствора имеет место даже при отсутствии водоотдачи цементного раствора выше залегания газового пласта;

— расширяющиеся цементные составы, из которых может выделяться газ после
окончания цементирования, могут компенсировать снижение давления в столбе цементного раствора;

— свободная вода непосредственно не влияет на утечки газа;

— товарные цементы, которые расширяются после начала схватывания, не
предотвращают утечки газа.

Исследования, проведенные техасским университетом и фирмой Экссон, показали, что миграция газа в ЗП при цементировании скважины обуславливается снижением
гидростатического давления столба тампонажного раствора во время начального периода его затвердевания [8].

Читайте так же:
Средство для цемента от грибка

Анализ существующих представлений показывает, что наиболее обоснованной
действующей силой флюидопроявления следует считать градиент давления, возникающий в период освоения и эксплуатации скважин за счет депрессии на непродуктивное насыщение флюидами пластов.

Представления о путях продвижения пластового флюида связываются с наиболее слабыми участками в ЗП, сопротивление которых недостаточно для предотвращения движения флюидов и с выявлением причин формирования таких участков.

В настоящее время основными причинами формирования флюидопроявляющих
каналов в структуре твердеющего тампонажного раствора в начальный период ожидания
затвердевания цемента (ОЗЦ) называют процесс седиментации и напорное воздействие
пластового флюида.

Совпадение характерных зон седиментации и изменения проницаемости говорит об определяющей роли осаждения твердых частиц в процессе повышения проницаемости
цементного раствора (камня).

Убедительным аргументом в пользу этого вывода служат
исследования, выявляющие влияние времени седиментационных процессов на
проницаемость цементного камня (рисунок 1).

Экспериментами доказана возможность
формирования сплошных каналов в цементном камне при использовании седиментационно неустойчивых тампонажных растворов.

Полученные данные подтверждаются
промысловыми наблюдениями.

Исследовано влияние состояния поверхности стенок скважины и колонны на
образование флюидопроводящих каналов.

Вопрос изучался на специальной установке,
имитирующей скважинные условия.

Установка для определения пути движения газа по
заколонному пространству через незатвердевший цементный раствор (рисунок 2) состоит из компрессора (1), модели обсаженной скважины (2), колонной головки (3) и манометра (4).

РИС. 1. Влияние времени седиментации на проницаемость

РИС. 2. Схема установки для изучения образования флюидопроводящих каналов
в тампонажном растворе

— степень взаимодействия седиментирующего тела с вмещающей средой снижается с уменьшением шероховатости поверхности среды;

— вес твердой составляющей раствора при зависании в большей степени передается на ту поверхность, с которой она больше взаимодействует при седиментации;

— зависание данного вида раствора происходит тем раньше, чем в большей степени на контактных поверхностях проявляются структурно-механические свойства скелетной
решетки.

Проведенная научно-исследовательская работа нашла применение при разработке предложений по предупреждению некачественного крепления наклонно-направленных скважин одного из газовых месторождений Краснодарского края.

Разрез скважин имеет
особенности, свойственные разрезам месторождений с АВПД:

— в нижней зоне имеется залежь, приуроченная к поровым коллекторам с АВПД;

— средняя зона представляет собой мощную (тысячи метров) толщу-покрышку,
сложенную глинами с маломощными, имеющими небольшое простирание, прослоями песчаников и алевролитов;

— верхняя зона сложена чередованием коллекторов и неколлекторов, она доступна для бокового и нисходящего движения вод; для этой зоны характерны нормальные давления флюидов.

Пример выделения зон АВПД по данным бокового каротажа в скважине данного
месторождения приведен на рисунке 3.

На основании анализа промысловых материалов сделан следующий вывод: причиной некачественного цементирования эксплуатационной колонны в скважине с появлением
после ОЗЦ заколонных перетоков является геологический фактор, а именно: пересечение скважиной пласта, относящегося к линзовидному нефтегазоводонасыщенному телу с
экстремальным градиентом порового давления, что не было учтено при цементировании скважины.

Это привело к образованию флюидопроводящих каналов в цементном камне из-за несоответствия параметров применяемого тампонажного раствора требуемому значению.

Анализ тампонажного раствора для цементирования эксплуатационной колонны в данной скважине с учетом горно-геологических условий показал возможные изменения самого процесса формирования цементного камня в заколонном пространстве.

Произошедшие в цементном камне в результате этого изменения могут быть оценены как влияние геологических и физико-химических факторов на качество крепи скважины.

Физико-химические факторы: седиментационное каналообразование; суффозия;
высокая водоотдача цементного раствора; наличие глинистой корки в зоне контакта с
тампонажным раствором; коагуляция тампонажных растворов в результате применения для

РИС. 3. Пример выделения зон АВПД по данным бокового каротажа

в наклонно-направленной скважине рассматриваемого месторождения

их обработки химически несовместимых реагентов; повышенная проницаемость цементного камня; коррозия при воздействии агрессивных пластовых флюидов или пластовых вод не имеют места за исключением возможного проявления контракционного эффекта при твердении тампонажного раствора с образованием пристенного слоя воды в зоне контакта
«колонна — цементный камень».

Кроме того, на образование заколонных проявлений влияет содержание газа в
буровом растворе.

Особенностью технологии цементирования в геолого-технических условиях скважин данной площади являются повышенные требования к соблюдению программы цементирования, выдерживанию необходимых технологических свойств тампонажного раствора в интервале открытого ствола и в межколонном пространстве.

При кратковременности процесса
цементирования кажущиеся незначительными отклонения режимов наземных и внутрискважинных работ от рекомендуемых могут оказать отрицательное влияние на качество цементирования скважин.

Для предотвращения заколонных перетоков и улучшения качества
крепления эксплуатационной колонны рекомендуется выполнение следующих мероприятий в период цементирования:

1. Буровой раствор дегазировать по всему объему, в течение 1,5 циклов циркуляции контролировать соответствие параметров раствора проектным.

2. В технологическую оснастку эксплуатационной колонны включить центраторы и турбулизаторы.

3. Провести цементирование эксплуатационной колонны в одну ступень путем порционной закачки двух пачек тампонажного раствора.

Читайте так же:
Пропорции цементного молочка для заливки керамзита

4. В целях устранения контракционного эффекта применяемый для цементирования эксплуатационной колонны тампонажный материал типа ЦТТУ I-160 может быть модифицирован введением расширяющей добавки на основе оксида магния.

Ее количество определяется экспериментально с учетом термобарических условий скважины.

5. Использованный цемент и реагенты для обработки тампонажного раствора по
термостойкости должны соответствовать условиям цементирования эксплуатационной
колонны.

Для обработки тампонажного раствора использованы реагенты: понизитель
фильтрации и регулятор реологических свойств, пластификатор, замедлитель сроков
схватывания, термостабилизатор, пеногаситель.

6. При подборе рецептур тампонажных растворов, исходить из того, что они должны обладать рядом специфических свойств:

— контракционный эффект тампонажного раствора при затвердении его в камень
должен быть пониженным;

— седиментационная устойчивость тампонажных растворов должна быть высокой;
водоотстой не должен превышать 1-1,5%, а материалы, используемые для приготовления тампонажного раствора, должны давать однородные по плотности смеси;

— сроки схватывания тампонажных растворов следует подбирать, исходя из сроков начала загустевания смесей при забойных динамических температурных условиях и давлениях; время загустевания должно на 25% превышать время, необходимое для проведения всей операции цементирования, но не более чем на 30-40 мин;

— тампонажные растворы должны иметь повышенные реологические характеристики (максимально допустимую динамическую вязкость и статическое напряжение сдвига), обеспечивающие, однако, успешное их транспортирование в интервал цеменирования;

— водоотдача тампонажного раствора, особенно в случае очистки стенок скважины от глинистой корки, должна быть минимальной в конкретных условиях применения;

— при выборе тампонажных материалов и реагентов предпочтение отдается тем,
которые обеспечивают необходимое время между началом и концом схватывания;

— химические реагенты для обработки тампонажных растворов следует выбирать также из условия максимальной вязкости жидкости затворения, плотность воды затворения желательно иметь повышенную, для чего рекомендуется растворять в ней
поваренную или другие соли.

Таким образом, качество крепления скважин определяется как комплексом технологических мероприятий в процессе цементирования, так и физико-химическими свойствами применяемых буровых и тампонажных растворов.

Несоответствие указанных факторов горно-геологическим условиям скважин приводит к разного рода осложнениям, наиболее существенным из которых в плане обеспечения надежного изоляционного комплекса скважины являются заколонные флюидопроявления.

Предложенные в данной работе мероприятия могут быть применены при креплении скважин на месторождениях и ПХГ с учетом индивидуальной проработки
в соответствии с конкретными горно-геологическими условиями.

ИЗУЧЕНИЕ СВОЙСТВ ТАМПОНАЖНЫХ РАСТВОРОВ МОДИФИЦИРОВАННЫХ ХЛОРИДАМИ МЕТАЛЛОВ

1 Бакалавр кафедры «Бурения нефтяных и газовых скважин», 2 бакалавр кафедры «Бурения нефтяных и газовых скважин», 3 магистр кафедры «Бурения нефтяных и газовых скважин», 4,5 бакалавр кафедры «Геология и разведка нефтяных и газовых месторождений», Уфимский государственный нефтяной технический университет

ИЗУЧЕНИЕ СВОЙСТВ ТАМПОНАЖНЫХ РАСТВОРОВ МОДИФИЦИРОВАННЫХ ХЛОРИДАМИ МЕТАЛЛОВ

Аннотация

В статье проводилось изучение свойств тампонажных растворов модифицированных хлоридами металлов. Поскольку конечной целью бурения скважин является создание долговечного и прочного изолированного канала, который связывает продуктивный пласт и дневную поверхность, то изучение свойств современных тампонажных растворов является актуальной темой, полностью не изученной до сегодняшнего дня. Стоит отметить, что при проводке скважин решающее значение имеют тампонажные материалы, которые используют для крепления стенок скважин и разобщение пластов. Основой использования тампонажных растворов для цементирования является их способность к структурообразованию и твердению. Требования к тампонажным материалам для цементирования нефтяных и газовых скважин в основном определяются геолого-техническими особенностями их проводки, которые также были изучены в представленной статье.

Ключевые слова: тампонажный раствор, модификаторы, понизители водоотдачи, цементный камень, замедлители сроков схватывания.

Sattarov Sh.M. 1 , Baratov Sh.F. 2 , Khaidarov Sh.A. 3 , Abzalov A. A. 4 , Perlova A.S. 5

1 Bachelor of the Department of “Oil and Gas Wells Drilling”, 2 Bachelor of the Department of “Oil and Gas Wells Drilling”, 3 Master’s Degree Student of the Department of “Oil and Gas Wells Drilling”, 4,5 Bachelor of the Department of “Geology and Oil and Gas Field Exploration”, Ufa State Oil Technical University

STUDY OF THE PROPERTIES OF BACKFILL SOLUTIONS MODIFIED BY METAL CHLORIDE

Abstract

The following article discusses the properties of oil-well slurries modified with the help of metal chloride. As the ultimate goal of drilling wells is the creation of a durable and strong isolated channel that connects the productive layer and the day surface, the study of the properties of modern oil wells is a relevant topic that has not yet been fully explored. It should be noted that when drilling wells, cementing materials used for fixing the walls of wells and separation of beds are crucial. The basis for the use of cementing slurry is their ability to structure and harden. Requirements for oil wells for cementing oil and gas wells are mainly determined by the geological and technical features of their wiring, which were also studied in the presented article.

Keywords: cementing slurry, modifiers, fluid loss reducers, cement stone, retarders of setting time.

Читайте так же:
Расход цемента для приготовления раствора фундамента

Важное значение тампонажных растворов при подводке скважины обуславливается тем, что от их возможности функционирования в различных технических ситуациях зависят эксплуатационные свойства скважины, а также ход буровых работ. Ввиду этого, целесообразность затрат на изучение физико-химических свойств тампонажных систем очевидна. Одним из способов управления свойствами тампонажных материалов является введение модифицирующих добавок. Такие добавки стали предметом исследования ряда научных работ [6, С.30], [9, С. 25-31], [10, С. 215]. К ним относят пластифицирующие добавки, понизители фильтрации, расширяющие добавки, исключающие усадку цементного камня. К числу новых материалов с заданными свойствами относят и комплекс-ионные – вещества, образующие прочные соединения с катионами поливалентных металлов. К более доступным добавкам относят соли металлов, каустическую соду и другие реагенты.

Разработка месторождений нередко сопровождается особыми геологическими условиями, в частности, месторождения Сибири, характеризующиеся низкими температурами пород, настаивают на поиске новых материалов со специфическими свойствами, позволяющими облегчить ведение буровых работ в осложненных условиях. Для разобщения продуктивных пластов в литературе описаны эффективные материалы на основе минеральных вяжущих веществ [7, С. 46–52], [8, С.62].

Тампонажная система представляет собой сложный дисперсный объект исследования. Данный раствор при низкой температуре остается в жидком состоянии до 10 часов и более, что приводит к большой усадке раствора (до 30 и более метров) и ухудшению качества сцепления цементного камня с колонной и стенкой скважины. Ускорители твердения в данном случае играют немаловажную роль, помогая повысить качество крепления верхних интервалов скважин. Однако, в условиях экспрессного затвердевания раствора существует риск того, что система не наберет нужную для работы прочность.

В ходе изучения свойств тампонажных растворов в качестве сырьевого материала был использован цементный раствор на основе ПЦТ I-50 при водно-цементном отношении, равном 0,5, в качестве базовых компонентов растворов выбраны следующие реагенты в различных концентрациях: хлорид натрия, хлорид кальция и хлорид железа (III). Согласно ГОСТ 26798.1-96 «Цементы тампонажные. Методы испытаний» [3], [5, С. 369] выбранный материал отдельно и с вводимыми реагентами различных концентраций был рассмотрен по следующим показателям: растекаемость, плотность цементного теста, время загустевания, водоотделение, а также прочность цементного камня на изгиб и сцепление цементного кольца с наружной поверхностью.

На рис. 1 представлена зависимость растекаемости от концентрации вводимой добавки соли, из которого видно, что наилучший результат из представленных показывает добавка хлорида натрия. Растекаемость тампонажного раствора увеличивается с возрастанием количества хлорида натрия до 2%. В точке 230 мм график имеет максимум и при дальнейшем росте концентрации, растекаемость уменьшается вплоть до первоначального значения.

22-09-2017 16-47-35

Рис. 1 – Зависимость концентрации соли от растекаемости

Важной задачей является снижение водоотделения цементов. После того как затворился цемент, в первые часы почти вся вода (за исключением 1-2%) является химически не связанной с цементными частицами, и в цементе удерживается только благодаря силе поверхностного натяжения, а также благодаря адсорбированному действию цемента по отношению к ней [5, с. 60]. Но, когда часть воды отделяется от цементного раствора, то очень быстро изменяются условия формирования цементного камня, а также это касается и физико-механических свойств и самого камня. Если непрерывно из цементного раствора удалять непрерывно выделяющуюся воду, то в цементном камне появятся трещины, и он будет пористым. Стоит также отметить такую особенность, что у цементного камня механическая прочность в 3-4 раза меньше прочности цементного камня, который затвердел при нормальных условиях. Из-за того, что он потерял большое количество воды, значительно изменяются свойства цементного раствора. Схватывается цементный раствор и твердеет камень неравномерно. Это, естественным образом, отражается и на физико-механических свойствах самого камня. На рис. 2 видно, что наиболее удовлетворительный результат с точки зрения водоотдачи показала добавка хлорида железа (III) в количестве 3% от массы цемента.

22-09-2017 16-48-51

Рис. 2 – Водоотделение раствора в зависимости от концентрации добавки

Одна из важнейших характеристик тампонажных растворов – плотность. Поддержание заданной и равномерной плотности – одно из основных технологических требований [2, С. 429]. Колебания данного показателя свидетельствуют об изменениях его водоцементного отношения, что вызывает изменение других его свойств – прокачиваемости, загустевания, прочности и т. п. Слишком большие изменения плотности считаются нарушением технологического режима процесса и могут привести к осложнениям. Уменьшение плотности утяжеленных тампонажных растворов по сравнению с заданной вызывает разжижение раствора, выпадение утяжелителя, выход из строя насосов, образование непродавливаемых пачек из выпавшего утяжелителя в обсадной колонне. Одним из методов получения раствора с плотностью выше нормальной является увеличение плотности жидкости затворения за счет добавок солей (рис. 3).

Читайте так же:
Применение пластификатора для цементных растворов

Введение хлорида кальция в количестве 3% повышает плотность цемента до 1,928 г/см 3 , хлорида натрия – до 1,919 г/см 3 , хлорида железа (III) – до 1,914 г/см 3 .

22-09-2017 16-50-32

Рис. 3 – Зависимость плотности раствора от концентрации добавки

Известно, что хлорид натрия обеспечивает хорошее сцепление цементного камня с отложениями солей и набухающими глинами [4]. Добавка хлорида натрия в количестве 2% от массы цемента приводит к значительному повышению прочности раствора (рис. 4). Также происходит рост в показателях сцепления цементного кольца со стенками скважины.

22-09-2017 16-51-26

Рис. 4 – Зависимость прочности и сцепления раствора от концентрации хлорида натрия

При твердении цементных растворов при пониженных температурах основной проблемой является снижение скорости твердения. Температура играет важную роль в процессе твердения. Снижение температуры ниже 5 о С существенно замедляет скорость твердения, а при температурах ниже 0 о С твердение может прекратиться из-за замерзания жидкости затворения [1, С. 245].

Применительно к креплению скважин в зонах многолетнемерзлых пород (ММП) это может привести к серьезным последствиям. В частности, в незатвердевшем цементном растворе, находящемся в затрубном пространстве скважины в неподвижном состоянии, могут происходить негативные процессы, основными из которых являются седиментация и водоотделение, нарушающие герметичность затрубного пространства.

Наиболее простой способ, препятствующий замерзанию жидкой фазы и ускорителей схватывания и твердения — это добавление в воду затворения солей. В то же время наличие значительных количеств хлоридов в цементном растворе может привести к коррозии обсадной колонны.

Сравнение времени загустевания тампонажного раствора с добавкой хлорида натрия в количестве 3% от массы цемента и без добавки показывает, что введение хлорида натрия приводит к значительному сокращению времени загустевания. Цементный раствор на основе ПЦТ I-50 при В/Ц, равном 0,5 при температуре 22 о С загустевает при перемешивании в атмосферном консистометре до консистенции 30 единиц по Бердену за 5 часов, в то время как тампонажный раствор затворенный на 3%-ном растворе NaCl достигает консистенции 30 единиц по Вердену за 3 часа 20 минут (рис. 5).

22-09-2017 16-52-21

Рис. 5 – Кривая загустевания раствора с добавкой NaCl

Таким образом модификаторы хлориды натрия и кальция следует вводить в раствор при буровых работах, проводимых в условиях низких температур (условия мерзлоты) и при необходимости в увеличенной растекаемости раствора. Целесообразнее применять хлорид натрия в качестве модифицирующей добавки в концентрации 2% от массы цемента, хлорида кальция – в концентрации 3% от массы цемента. Именно в таких содержаниях данные добавки наиболее действенны для поставленных целей.

В случае необходимости увеличения времени загустевания, добавку хлорид натрия следует применять в количестве 3%, учитывая сопутствующие влияния соли на физико-химические свойства раствора.

Модификатор хлорид железа (III) по большей части не выделяется среди двух других солей по влиянию на тампонажный раствор, однако данный модификатор показывает удовлетворительные результаты в качестве понизителя водоотдачи.

Список литературы / References

  1. Агзамов Ф.А., Измухамбетов Б.С., Токунова Э.Ф. Химия тампонажных и промывочных растворов // Недра. – М., 2011. – С. 245.
  2. Булатов А.И., Макаренко П.П., Проселков Ю.М. Буровые промывочные растворы // Недра. – М., 1999. – С. 429.
  3. ГОСТ 26798.1-96 «Цементы тампонажные. Методы испытаний» [Электронный ресурс] URL: http://www.internet-law.ru/gosts/gost/8996/ (дата обращения: 09.07.2017).
  4. Исследования и опыт применения тампонажных растворов с добавкой солей хлоридов при цементировании кондукторов на арланском месторождении РБ [Электронный ресурс] URL: http://novator-ufa.ru/publikacii/29-issledovanija-i-opyt.html (дата обращения: 09.07.2017)
  5. Овчинников В.П., Аксенова Н.А., Овчинников П.В. Физико-химические процессы твердения, работа в скважине и коррозия цементного камня: Учеб. пособие для вузов // Нефтегазовый университет. – Тюмень, 2007. – С. 369.
  6. Перейма А.А. О влиянии химической обработки тампонажных растворов на эффективность действия расширяющих добавок / А.А. Перейма, Ю.С. Минченко, С.Г. Трусов // Строительство нефтяных и газовых скважин на суше и на море – 2011. – №5. – 27 – С. 30.
  7. Петров В.С. Регулирование свойств тампонажного раствора – камня с помощью добавок аминометиленфосфоновых комплексонов/ В.С. Петров // Нефтегазовое дело – 2012. – №6. – С. 46–52.
  8. Регулирование свойств тампонажных растворов с помощью многофункциональных химреагентов /Мариампольский Н.А. и др. //Техника и технология бурения скважин: обз. инф. /ВНИИОЭНГ. М.:1988. С. 62.
  9. Самакаев Р.Х., Дытюк Л.Т. Применение комплексонов в нефтяной промышленности. //Нефтяное хозяйство. – М., 1995. – С. 25-31.
  10. Штэпа И.В. Обоснование и разработка технологии крепления стенок разведочных и технических скважин в сложных условиях методом струйной цементации: дис. канд. тех. наук : 25.00.14 : защищена 29.12.2015 / Штэпа Иван Владиславович. – М., 2002. – С. 215.

Список литературы на английском языке / References in English

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector