Teplomarcet.ru

Про Тепло дома
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Какое количество теплоты получает вода при нагревании. Количество теплоты. Удельная теплоёмкость

Какое количество теплоты получает вода при нагревании. Количество теплоты. Удельная теплоёмкость

На практике часто пользуются тепловыми расчётами. Например, при строительстве зданий необходимо учитывать, какое количество теплоты должна отдавать зданию вся система отопления. Следует также знать, какое количество теплоты будет уходить в окружающее пространство через окна, стены, двери. Покажем на примерах, как нужно вести простейшие расчёты.
Итак, необходимо узнать, какое количество теплоты получила при нагревании медная деталь. Её масса 2 кг, а температура увеличивалась от 20°С до 280°С. Вначале по таблице определим удельную теплоёмкость меди см = 400 Дж/кг* °С»

Это означает, что на нагревание детали из меди массой 1 кг на 1°С потребуется 400 Дж. Для нагревания медной детали массой 2 кг на 1°С необходимо в 2 раза большее количество теплоты — 800 Дж. Температуру медной детали необходимо увеличить не на 1°С, а на 260°С, значит, потребуется в 260 раз большее количество теплоты, т. е. 800 Дж. 260 = 208 000 Дж.

Определить, какое количество теплоты необходимо сообщить куску свинца массой 2 кг для его нагревания на 10 °С.

По таблице находим для свинца:

(Ответ: Q = 2800 Дж.)

Какое количество теплоты отдает 5 л воды при охлаждении с 50 °С до 10 °С?

Так как плотность воды ρ = 1000 кг/м3, то масса воды равна:

(Ответ: Q = -840 кДж.)

Знак «-» в ответе указывает на то, что вода отдает тепло.

Домашняя работа.

Задание 1. Ответь на вопросы.
1.Что нужно знать, чтобы вычислить количество теплоты, полученное телом при нагревании?
2. Объясните на примере, как рассчитывают количество теплоты, сообщённое телу при его нагревании или выделяющееся при его охлаждении.
3. Напишите формулу для расчёта количества теплоты.
4. Какой вывод можно сделать из опыта по смешиванию холодной и горячей воды? Почему на практике эти энергии не равны?
Задание 2. Реши задачи.

Мы узнали, от каких величин зависит количество теплоты и какими единицами его измеряют.

Для подсчета количества теплоты нужно знать удельную теплоемкость вещества, из которого изготовлено тело, массу этого тела и разность между его начальной и конечной температурой.

Удельная теплоемкость железа равна 460 Дж/кг*°С, это означает, что для нагревания железа массой 1 кг на 1 °С требуется 460 Дж.

Для нагревания железа массой 5 кг на 1°С потребуется в 5 раз большее количество теплоты, т. е. 460 Дж X 5 =2300 Дж; для нагревания железа массой 5 кг на 600 °С потребуется еще в 600 раз большее количество теплоты, т. е. 2300 Дж X 600 = 1380 000 Дж.

Указанное правило можно записать в виде формулы, введя следующие обозначения: Q-количество теплоты, c – кудельная теплоемкость вещества, m — масса тела, t1 -начальная и t2 – конечная температура тела. Тогда

Пример 1. В железный котел массой 10 кг налито 20 кг воды. Какое количество теплоты нужно передать котлу, чтобы нагреть его вместе с налитой в него водой от 10 до 100 °С?

Оба тела — и котел, и вода — будут нагреваться вместе. Между ними происходит теплообмен, и их температуры можно считать одинаковыми. Поэтому и котел, и вода нагреваются на одно и то же число градусов: 100 °С — 10 °С = 90 °С. Но количества теплоты, полученные котлом и водой, не будут одинаковыми, ведь их массы и удельные теплоемкости различны.

котлом, равно:

Q1 =460 Дж/кг*°С 10 кг 90°С=414 000 Дж ≈ 400 кДж.

Количество теплоты, полученное водой, равно:

Q2 = 4200 Дж/кг*°С 20 кг 90°С = 7560000 Дж≈7600 кДж.

На нагревание и котла, и воды израсходовано количество теплоты:

Q = 400 кДж+7 600 кДж = 8 000 кДж

Пример 2. Смешали 0,8 кг воды, имеющей температуру 25°С, и 0,2 кг кипятка. Температуру полученной смеси измерили, и она оказалась равной 40 °С. Вычислить , какое количество теплоты отдал при остывании кипяток и какое количество теплоты получила, при нагревании более холодная вода. Сравнить эти количества теплоты.

Кипяток остыл от 100 до 40 °С, при этом он отдал количество теплоты:

Q1 = 4 200 Дж/кг*°С 0,2 кг (100° С – 40° С) = 50 400 Дж.

Вода, в которую был влит кипяток, нагрелась от 25 до 40 °С и получила количество теплоты:

Q2 = 4 200 Дж/кг*°С 0,8 кг (40° С – 25° С) = 50 400 Дж.

Мы видим, что количество теплоты, отданное горячей водой, и количество теплоты, полученное холодной водой, равны между собой. Это не случайный результат. Опыт показывает, что если между телами происходит теплообмен, то внутренняя энергия всех нагревающихся тел увеличивается настолько, насколько уменьшается внутренняя энергия остывающих тел.

Однако если провести более точные измерения в опытах по смешиванию горячей и холодной воды, то точного равенства отданной и полученной энергии не получится. Отданная энергия будет больше полученной. Объясняется это тем, что часть энергии во время опыта передается воздуху и сосуду. Разница в отданном и полученном количестве теплоты будет тем меньше, чем меньше потерь энергии допускается в опыте.

Читайте так же:
Технология монтажа облицовочного кирпича

Вопросы. 1. Что нужно знать, чтобы подсчитать количество теплоты, полученное телом при нагревании? 2. Объясните на примере, как подсчитывают количество теплоты, сообщенное телу при его нагревании или выделяющееся при его охлаждении. 3. Как записывают формулу для подсчета количества теплоты? 4. Какой вывод можно сделать из опыта по смешиванию холодной и горячей воды?

  1. Удельная теплоемкость алюминия равна 920 Дж/кг ° С. Что это означает?
  2. Какая из указанных в таблице 6 жидкостей быстрее нагревается при одинаковых условиях нагревания? Почему?
  3. Почему в качестве охладителя (например, при охлаждении двигателя внутреннего сгорания) из всех жидкостей выгоднее всего применять воду?
  4. Рассчитайте количество теплоты, необходимое для нагревания: а) чугунного утюга массой 1,5 кг на 200° С, б) алюминиевой ложки массой 50 г от 20 до 90° С, в) кирпичной печи массой 2 т от 10 до 60°С,

1. Изменение внутренней энергии путём совершения работы характеризуется величиной работы, т.е. работа является мерой изменения внутренней энергии в данном процессе. Изменение внутренней энергии тела при теплопередаче характеризуется величиной, называемой количеством теплоты .

Количеством теплоты называется изменение внутренней энергии тела в процессе теплопередачи без совершения работы.

Количество теплоты обозначают буквой ​(Q ) ​. Так как количество теплоты является мерой изменения внутренней энергии, то его единицей является джоуль (1 Дж).

При передаче телу некоторого количества теплоты без совершения работы его внутренняя энергия увеличивается, если тело отдаёт какое-то количество теплоты, то его внутренняя энергия уменьшается.

2. Если в два одинаковых сосуда налить в один 100 г воды, а в другой 400 г при одной и той же температуре и поставить их на одинаковые горелки, то раньше закипит вода в первом сосуде. Таким образом, чем больше масса тела, тем большее количество теплоты требуется ему для нагревания. То же самое и с охлаждением: тело большей массы при охлаждении отдаёт большее количество теплоты. Эти тела сделаны из одного и того же вещества и нагреваются они или охлаждаются на одно и то же число градусов.

​3. Если теперь нагревать 100 г воды от 30 до 60 °С, т.е. на 30 °С, а затем до 100 °С, т.е. на 70 °С, то в первом случае на нагревание уйдёт меньше времени, чем во втором, и, соответственно, на нагревание воды на 30 °С, будет затрачено меньшее количество теплоты, чем на нагревание воды на 70 °С. Таким образом, количество теплоты прямо пропорционально разности конечной ​((t_2,^circ C) ) ​ и начальной ((t_1,^circ C) ) температур: ​(Qsim(t_2-t_1) ) ​.

4. Если теперь в один сосуд налить 100 г воды, а в другой такой же сосуд налить немного воды и положить в неё такое металлическое тело, чтобы его масса и масса воды составляли 100 г, и нагревать сосуды на одинаковых плитках, то можно заметить, что в сосуде, в котором находится только вода, температура будет ниже, чем в том, в котором находятся вода и металлическое тело. Следовательно, чтобы температура содержимого в обоих сосудах была одинаковой нужно воде передать большее количество теплоты, чем воде и металлическому телу. Таким образом, количество теплоты, необходимое для нагревания тела зависит от рода вещества, из которого это тело сделано.

5. Зависимость количества теплоты, необходимого для нагревания тела, от рода вещества характеризуется физической величиной, называемой удельной теплоёмкостью вещества .

Физическая величина, равная количеству теплоты, которое необходимо сообщить 1 кг вещества для нагревания его на 1 °С (или на 1 К), называется удельной теплоёмкостью вещества.

Такое же количество теплоты 1 кг вещества отдаёт при охлаждении на 1 °С.

Удельная теплоёмкость обозначается буквой ​(c ) ​. Единицей удельной теплоёмкости является 1 Дж/кг °С или 1 Дж/кг К.

Значения удельной теплоёмкости веществ определяют экспериментально. Жидкости имеют большую удельную теплоёмкость, чем металлы; самую большую удельную теплоёмкость имеет вода, очень маленькую удельную теплоёмкость имеет золото.

Удельная теплоёмкость свинца 140 Дж/кг °С. Это значит, что для нагревания 1 кг свинца на 1 °С необходимо затратить количество теплоты 140 Дж. Такое же количество теплоты выделится при остывании 1 кг воды на 1 °С.

Поскольку количество теплоты равно изменению внутренней энергии тела, то можно сказать, что удельная теплоёмкость показывает, на сколько изменяется внутренняя энергия 1 кг вещества при изменении его температуры на 1 °С. В частности, внутренняя энергия 1 кг свинца при его нагревании на 1 °С увеличивается на 140 Дж, а при охлаждении уменьшается на 140 Дж.

Читайте так же:
Чем шлифуют печной кирпич

Количество теплоты ​(Q ) ​, необходимое для нагревания тела массой ​(m ) ​ от температуры ((t_1,^circ C) ) до температуры ((t_2,^circ C) ) , равно произведению удельной теплоёмкости вещества, массы тела и разности конечной и начальной температур, т.е.

​По этой же формуле вычисляется и количество теплоты, которое тело отдаёт при охлаждении. Только в этом случае от начальной температуры следует отнять конечную, т.е. от большего значения температуры отнять меньшее.

6. Пример решения задачи . В стакан, содержащий 200 г воды при температуре 80 °С, налили 100 г воды при температуре 20 °С. После чего в сосуде установилась температура 60 °С. Какое количество теплоты получила холодная вода и отдала горячая вода?

При решении задачи необходимо выполнять следующую последовательность действий:

  1. записать кратко условие задачи;
  2. перевести значения величин в СИ;
  3. проанализировать задачу, установить, какие тела участвуют в теплообмене, какие тела отдают энергию, а какие получают;
  4. решить задачу в общем виде;
  5. выполнить вычисления;
  6. проанализировать полученный ответ.

1. Условие задачи .

Дано:
​(m_1 ) ​ = 200 г
​(m_2 ) ​ = 100 г
​(t_1 ) ​ = 80 °С
​(t_2 ) ​ = 20 °С
​(t ) ​ = 60 °С
______________

​(Q_1 ) ​ — ? ​(Q_2 ) ​ — ?
​(c_1 ) ​ = 4200 Дж/кг · °С

2. СИ: ​(m_1 ) ​ = 0,2 кг; ​(m_2 ) ​ = 0,1 кг.

3. Анализ задачи . В задаче описан процесс теплообмена между горячей и холодной водой. Горячая вода отдаёт количество теплоты ​(Q_1 ) ​ и охлаждается от температуры ​(t_1 ) ​ до температуры ​(t ) ​. Холодная вода получает количество теплоты ​(Q_2 ) ​ и нагревается от температуры ​(t_2 ) ​ до температуры ​(t ) ​.

4. Решение задачи в общем виде . Количество теплоты, отданное горячей водой, вычисляется по формуле: ​(Q_1=c_1m_1(t_1-t) ) ​.

Количество теплоты, полученное холодной водой, вычисляется по формуле: (Q_2=c_2m_2(t-t_2) ) .

5. Вычисления .
​(Q_1 ) ​ = 4200 Дж/кг · °С · 0,2 кг · 20 °С = 16800 Дж
(Q_2 ) = 4200 Дж/кг · °С · 0,1 кг · 40 °С = 16800 Дж

6. В ответе получено, что количество теплоты, отданное горячей водой, равно количеству теплоты, полученному холодной водой. При этом рассматривалась идеализированная ситуация и не учитывалось, что некоторое количество теплоты пошло на нагревание стакана, в котором находилась вода, и окружающего воздуха. В действительности же количество теплоты, отданное горячей водой, больше, чем количество теплоты, полученное холодной водой.

Часть 1

1. Удельная теплоёмкость серебра 250 Дж/(кг · °С). Что это означает?

1) при остывании 1 кг серебра на 250 °С выделяется количество теплоты 1 Дж
2) при остывании 250 кг серебра на 1 °С выделяется количество теплоты 1 Дж
3) при остывании 250 кг серебра на 1 °С поглощается количество теплоты 1 Дж
4) при остывании 1 кг серебра на 1 °С выделяется количество теплоты 250 Дж

2. Удельная теплоёмкость цинка 400 Дж/(кг · °С). Это означает, что

1) при нагревании 1 кг цинка на 400 °С его внутренняя энергия увеличивается на 1 Дж
2) при нагревании 400 кг цинка на 1 °С его внутренняя энергия увеличивается на 1 Дж
3) для нагревания 400 кг цинка на 1 °С его необходимо затратить 1 Дж энергии
4) при нагревании 1 кг цинка на 1 °С его внутренняя энергия увеличивается на 400 Дж

3. При передаче твёрдому телу массой ​(m ) ​ количества теплоты ​(Q ) ​ температура тела повысилась на ​(Delta t^circ ) ​. Какое из приведённых ниже выражений определяет удельную теплоёмкость вещества этого тела?

4. На рисунке приведён график зависимости количества теплоты, необходимого для нагревания двух тел (1 и 2) одинаковой массы, от температуры. Сравните значения удельной теплоёмкости (​(c_1 ) ​ и ​(c_2 ) ​) веществ, из которых сделаны эти тела.

Удельная теплоемкость кирпича равна 800

ИЗМЕРЕНИЕ КОЛИЧЕСТВА ТЕПЛОТЫ

Задание 990.

Пусть в трех мензурках температура воды повысилась на один градус (см. рис. 9). Одинаковое ли количество теплоты получила вода в мензурках? В какой — наибольшее; в какой — наименьшее? Объясните почему.

Задание 991.

Почему нельзя вскипятить ведро воды на спиртовке?

Задание 992.

В одинаковые сосуды с равными массами и равной температурой воды погрузили свинцовый и оловянный шары, у которых одинаковые массы и температуры. Температура воды в сосуде с оловянным шаром повысилась больше, чем в другом сосуде. У какого металла — свинца или олова — удельная теплоемкость больше? Одинаково ли изменилась внутренняя энергия воды в сосудах? Одинаковое ли количество теплоты передали шары воде и сосудам?

Задание 993.

Если прогретые в кипящей воде цилиндры из свинца, олова и стали массой 1 кг поставить на лед, то они охладятся и часть льда под ними растает. Как изменится внутренняя энергия цилиндров? Под каким из цилиндров растает больше льда, под каким — меньше? Какая из лунок (рис. 263) образовалась под свинцовым цилиндром, какая — под стальным?

Читайте так же:
Силикатного кирпича с отверстиями

Рис. 263

Задание 994.

Минеральное масло и стальная деталь имеют равные массы. Для закалки стали горячую деталь погрузили в масло. При этом температура масла изменилась меньше, чем температура детали. Какое вещество имеет большую удельную теплоемкость: сталь или масло? Ответ обоснуйте.

Задание 995.

Кубики, изготовленные из меди, стали и алюминия, массами 1 кг каждый охлаждают на 1 °С. На сколько джоулей и как меняется внутренняя энергия каждого кубика?

Задание 996.

На что больше расходуется энергии: на нагревание чугунного горшка или воды, налитой в него, если их массы одинаковы?

Задание 997.

Алюминиевую и серебряную ложки одинаковой массы и температуры опустили в кипяток. Равное ли количество теплоты получат они от воды?

Задание 998.

Стальную деталь для закалки и медную заклепку равной массы для отжига нагрели до одинаковой температуры, а затем погрузили в воду. Одинаковое ли количество теплоты получила вода при охлаждении этих тел?

Задание 999.

Термос вместимостью 3 л заполнили кипятком. Через сутки температура воды в нем понизилась до 77 °С. Определите, на сколько изменилась внутренняя энергия воды.

Задание 1000.

В алюминиевом чайнике нагревали воду и, пренебрегая потерями количества теплоты в окружающее пространство, построили графики зависимости количества теплоты, полученной чайником и водой, от времени нагревания. Какой график построен для воды, а какой — для чайника (рис. 264)?

Рис. 264

Задание 1001.

На одинаковых горелках нагревались вода, медь и железо равной массы. Укажите, какой график (рис. 265) построен для воды, какой — для меди и какой — для железа. (При построении графика потери некоторого количества теплоты в окружающее пространство не учитывались.)

Рис.265

Задание 1002.

Для изменения температуры нафталина, никеля и фарфора массой 1 кг на 1 °С соответственно требуется 130, 460 и 750 Дж энергии. Чему равна удельная теплоемкость этих веществ?

Задание 1003.

Для нагревания на 1 °С молока и тел из золота, бронзы, никеля, глицерина массами по 2 кг каждое соответственно расходуется 260, 760, 920, 4800 и 7800 Дж энергии. Чему равна удельная теплоемкость этих веществ?

Задание 1004.

Нагретый камень массой 5 кг, охлаждаясь в воде на 1 °С, передает ей 2,1 кДж энергии. Чему равна удельная теплоемкость камня?

Задание 1005.

Определите (устно), какое количество теплоты потребуется для изменения температуры алюминия на 1 °С; свинца на 2 °С; олова на 2 °С; платины на 3 °С; серебра на 3 °С, если масса каждого вещества 1 кг.

Задание 1006.

Какое количество теплоты потребуется для нагревания на 1 °С воды объемом 0,5 л; олова массой 500 г; серебра объемом 2 см 3 ; стали объемом 0,5 м 3 ; латуни массой 0,2 т?

Задание 1007.

Стальная деталь массой 20 кг при обработке на токарном станке нагрелась на 50 "С. На сколько джоулей увеличилась внутренняя энергия детали?

Задание 1008.

Стальное сверло массой 10 г при работе нагрелось от 15 до 115 °С. Сколько энергии израсходовано двигателем непроизводительно на нагревание сверла?

Задание 1009.

Перед горячей штамповкой латунную болванку массой 15 кг нагрели от 15 до 750 °С. Какое количество теплоты отдаст болванка окружающим телам при охлаждении до 15 °С?

Задание 1010.

Какое количество теплоты отдаст стакан кипятка (250 см 3 ), остывая до температуры 14 °С?

Задание 1011.

Какое количество теплоты отдаст кирпичная печь массой 0,35 т, остывая с изменением температуры на 50 °С?

Задание 1012.

Какое количество теплоты выделилось при охлаждении чугунной болванки массой 32 кг, если ее температура изменилась от 1115 до 15 °С?

Задание 1013.

а) Воздух, заполняющий объем 0,5 л в цилиндре с легким поршнем, нагрели от О °С до 30 "С при постоянном атмосферном давлении. Какое количество теплоты получил воздух?

б) В порожнем закрытом металлическом баке вместимостью 60 м 3 под действием солнечного излучения воздух нагрелся от 0 до 20 °С. Как и на сколько изменилась внутренняя энергия воздуха в баке? (Удельная теплоемкость воздуха при постоянном объеме равна 720 Дж/кг • °С.)

Задание 1014.

Какое количество теплоты передаст окружающим телам кирпичная печь массой 1,5 т при охлаждении от 30 до 20 °С?

Задание 1015.

Какое количество теплоты получили алюминиевая кастрюля массой 200 г и находящаяся в ней вода объемом 1,5 л при нагревании от 20 °С до кипения при температуре 100 °С?

Задание 1016.

В алюминиевой кастрюле, масса которой 800 г, нагрели 5 л воды от 10 °С до кипения. Какое количество теплоты получили кастрюля и вода, если при нагревании атмосферное давление равнялось 760 мм рт. ст.?

Читайте так же:
Почему человек ест кирпич

Задание 1017.

В железный душевой бак, масса которого 65 кг, налили холодной колодезной воды объемом 200 л. В результате нагревания солнечным излучением температура воды повысилась от 4 до 29 °С. Какое количество теплоты получили бак и вода?

Задание 1018.

Рассчитайте, какое количество теплоты отдаст кирпичная печь, сложенная из 300 кирпичей, при остывании от 70 до 20 °С. Масса одного кирпича равна 5,0 кг.

Задание 1019.

Какое количество теплоты получила вода при нагревании от 15 до 25 °С в бассейне, длина которого 100 м, ширина 6 м и глубина 2 м?

Задание 1020.

Насколько изменится температура воды в стакане, если ей сообщить количество теплоты, равное 10 Дж? Вместимость стакана принять равной 200 см 3 .

Задание 1021.

Вычислите, на сколько градусов нужно повысить температуру куска свинца массой 100 г, чтобы внутренняя энергия его увеличилась на 280 Дж.

Задание 1022.

Подсчитано, что при охлаждении куска олова массой 20 г внутренняя энергия его уменьшилась на 1 кДж. По этим данным определите, на сколько градусов изменилась температура олова.

Задание 1023.

а) Мальчик вычислил, что при нагревании воды от 15 °С до кипения (при 100 °С) внутренняя энергия ее увеличится на 178, 5 кДж. Какова масса нагреваемой воды?

б) Когда в бак умывальника с водой добавили еще 3 л воды при 100 °С и перемешали всю воду, то температура воды в баке стала равна 35 °С. Пренебрегая потерями теплоты на нагревание бака и окружающей среды, определите начальный объем воды в баке.

в) Чтобы вымыть посуду, мальчик налил в таз 3 л воды, температура которой равна 10 °С. Сколько литров кипятка (при 100 °С) нужно долить в таз, чтобы температура воды в нем стала равной 50 °С?

г) Для купания ребенка в ванну налили 4 ведра (40 л) холодной воды, температура которой была равна 6 °С, а затем долили горячую воду температурой 96 °С. Определите массу долитой воды, если температура воды в ванне стала равной 36 "С. (Расчет производите без учета нагревания ванны и окружающей среды.)

Задание 1024.

Определите удельную теплоемкость металла, если для изменения температуры от 20 до 24 °С у бруска массой 100 г, сделанного из этого металла, внутренняя энергия увеличивается на 152 Дж.

Задание 1025.

Экспериментом было установлено, что при изменении температуры куска металла массой 100 г от 20 до 40 °С внутренняя энергия его увеличилась на 280 Дж. Определите удельную теплоемкость этого металла.

Задание 1026.

Экспериментом установили, что при охлаждении куска олова массой 100 г до температуры 32 "С выделилось 5 кДж энергии. Определите температуру олова до охлаждения.

Задание 1027.

До какой температуры остынут 5 л кипятка, взятого при температуре 100 °С, отдав в окружающее пространство 1680 кДж энергии?

Задание 1028.

При охлаждении медного паяльника до 20 °С выделилось 30,4 кДж энергии. До какой температуры был нагрет паяльник, если его масса 200 г?

Задание 1029.

а) Было установлено, что при работе машины внутренняя энергия одной из алюминиевых деталей массой 2 кг повысилась на столько, на сколько увеличилась внутренняя энергия воды массой 800 г при нагревании ее от 0 до 100 °С. По этим данным определите, на сколько градусов повысилась температура детали.

б) В ванну налили и смешали 50 л воды при температуре 15 °С и 30 л воды при температуре 75 °С. Вычислите, какой стала бы температура воды в ванне, если бы некоторая часть внутренней энергии горячей воды не расходовалась на нагревание ванны и окружающей среды.

в) Пренебрегая потерями теплоты на нагревание ванны и иных тел окружающей среды, вычислите, какой стала бы температура воды в ванне, если в нее налить 6 ведер воды при температуре 10 °С и пять ведер воды при температуре 90 °С. (Вместимость ведра примите равной 10 л.)

Задание 1030.

На нагревание кирпича массой 4 кг на 63 °С затрачено такое же количество теплоты, как и на нагревание воды той же массы на 13,2 °С. Определите удельную теплоемкость кирпича.

Задание 1031.

Двигатель мощностью 75 Вт в течение 5 мин вращает лопасти винта внутри калориметра, в котором находится вода объемом 5 л. Вследствие трения о воду лопастей винта вода нагрелась. Считая, что вся энергия пошла на нагревание воды, определите, как изменилась ее температура.

Задание 1032.

Стальной боек (ударная часть пневматического молотка) массой 152 кг во время работы в течение 1,5 мин нагрелся на 20 °С. Полагая, что на нагревание бойка пошло 40% всей энергии молотка, определите произведенную работу и мощность, развиваемую при этом.

Читайте так же:
Цистит народные средства кирпич

Плотность и удельная теплоемкость кирпича

Плотность кирпича и удельная теплоемкость кирпича различных видов

Кирпич — ходовой стройматериал в строительстве зданий и сооружений. Многие различают только красный и белый кирпич, но его виды намного разнообразнее. Они различаются как внешне (форма, цвет, размеры), так и такими свойствами, как плотность и теплоемкость.

Традиционно различают керамический и силикатный кирпич, которые имеют различную технологию изготовления. Важно знать, что плотность кирпича, его удельная теплоемкость и теплопроводность кирпича у каждого вида может существенно отличаться.

Керамический кирпич изготавливается из глины с различными добавками и подвергается обжигу. Удельная теплоемкость керамического кирпича равна 700…900 Дж/(кг·град). Средняя плотность керамического кирпича имеет значение 1400 кг/м 3 . Преимуществами этого вида являются: гладкая поверхность, морозо- и водоустойчивость, а также стойкость к высоким температурам. Плотность керамического кирпича определяется его пористостью и может находится в пределах от 700 до 2100 кг/м 3 . Чем выше пористость, тем меньше плотность кирпича.

Силикатный кирпич имеет следующие разновидности: полнотелый, пустотелый и поризованный, он имеет несколько типоразмеров: одинарный, полуторный и двойной. Средняя плотность силикатного кирпича составляет 1600 кг/м 3 . Плюсы силикатного кирпича в отличной звуконепроницаемости. Даже если прокладывать тонкий слой из такого материала, звукоизоляционные свойства останутся на должном уровне. Удельная теплоемкость силикатного кирпича находится в пределах от 750 до 850 Дж/(кг·град).

Значения плотности кирпича различных видов и его удельной (массовой) теплоемкости при различных температурах представлены в таблице:

Таблица плотности и удельной теплоемкости кирпича

Вид кирпичаТемпература,
°С
Плотность,
кг/м 3
Теплоемкость,
Дж/(кг·град)
Трепельный-20…20700…1300712
Силикатный-20…201000…2200754…837
Саманный-20…20753
Красный0…1001600…2070840…879
Желтый-20…201817728
Строительный20800…1500800
Облицовочный201800880
Динасовый1001500…1900842
Динасовый10001500…19001100
Динасовый15001500…19001243
Карборундовый201000…1300700
Карборундовый1001000…1300841
Карборундовый10001000…1300779
Магнезитовый1002700930
Магнезитовый100027001160
Магнезитовый150027001239
Хромитовый1003050712
Хромитовый10003050921
Шамотный1001850833
Шамотный100018501084
Шамотный150018501251

Необходимо отметить еще один популярный вид кирпича – облицовочный кирпич. Он не боится ни влаги, ни холодов. Удельная теплоемкость облицовочного кирпича составляет 880 Дж/(кг·град). Облицовочный кирпич имеет оттенки от ярко-желтого до огненно-красного. Таким материалом можно производить и отделочные и облицовочные работы. Плотность кирпича этого вида имеет величину 1800 кг/м 3 .

Стоит отметить отдельный класс кирпичей — огнеупорный кирпич. К этому классу относятся динасовый, карборундовый, магнезитовый и шамотный кирпич. Огнеупорный кирпич достаточно тяжел — плотность кирпича этого класса может достигать значения 2700 кг/м 3 .

Наименьшей теплоемкостью при высоких температурах обладает карборундовый кирпич — она составляет величину 779 Дж/(кг·град) при температуре 1000°С. Кладка из такого кирпича прогревается намного быстрее, чем из шамотного, но хуже держит тепло.

Огнеупорный кирпич применяется, при строительстве печей, с рабочей температурой до 1500°С. Удельная теплоемкость огнеупорного кирпича существенно зависит от температуры. Например, удельная теплоемкость шамотного кирпича имеет величину 833 Дж/(кг·град) при 100°С и 1251 Дж/(кг·град) при 1500°С.

Удельная теплоемкость

Нажмите, чтобы узнать подробности

Удельная теплоемкость вещества показывает, какое количество теплоты необходимо, чтобы изменить температуру вещества массой 1 кг на 1°С.

У разных веществ удельная теплоемкость имеет разные значения.

У разных веществ удельная теплоемкость имеет разные значения.

 Удельная теплоемкость вещества, находящегося в различных агрегатных состояниях, различна ( например: вода и лёд ) . С =2100 С =4200

Удельная теплоемкость вещества, находящегося в различных агрегатных состояниях, различна ( например: вода и лёд ) .

Если одинаковым по массе телам из разных веществ передать одно и то же количество теплоты, то они нагреются до разной температуры. Вещество с меньшей теплоемкостью нагреется сильнее , а вещество с большей теплоемкостью - слабее. С = 400 С = 500

Если одинаковым по массе телам из разных веществ передать одно и то же количество теплоты, то они нагреются до разной температуры.

Вещество с меньшей теплоемкостью нагреется сильнее , а вещество с большей теплоемкостью — слабее. С = 400

Что означает запись ? С = 400 Это значит, что для нагрева 1 кг меди на 1 ˚С потребуется количество теплоты = 400 Дж ( при охлаждении 1 кг меди на 1*С выделяется Q= 400 Дж )

Что означает запись ?

Это значит, что для нагрева 1 кг меди на 1 ˚С потребуется количество теплоты = 400 Дж

( при охлаждении 1 кг меди на 1*С выделяется Q= 400 Дж )

 Расчёт количества теплоты КОЛИЧЕСТВО ТЕПЛОТЫ - энергия, которую получает или теряет тело при теплопередаче Количество теплоты, которое получает (или отдаёт) тело, зависит от его массы, рода вещества, и изменения температуры. Российская газета 2 1

Расчёт количества теплоты

КОЛИЧЕСТВО ТЕПЛОТЫ — энергия, которую получает или теряет тело при теплопередаче

Количество теплоты, которое получает (или отдаёт) тело, зависит от его массы, рода вещества, и изменения температуры.

 Воду часто применяют в качестве охладителя в двигателях внутреннего сгорания и атомных реакторах, т.к. она……………………………………….

Воду часто применяют в качестве охладителя в двигателях внутреннего сгорания и атомных реакторах, т.к. она……………………………………….

1. Удельная теплоёмкость кирпича равна 880 Дж/(кг* ˚ С). Что это означает? 2. Почему медная проволока нагревается быстрее, чем таких же размеров деревянная палочка? 3. Почему в медицинских грелках используют воду?

1. Удельная теплоёмкость кирпича равна 880 Дж/(кг* ˚ С). Что это означает?

2. Почему медная проволока нагревается быстрее, чем таких же размеров деревянная палочка?

3. Почему в медицинских грелках используют воду?

Почему в Светлогорске не бывает суровых зим и очень жаркого лета?

Почему в Светлогорске не бывает суровых зим и очень жаркого лета?

ИНТЕРЕСНО … … что в пустынях днем очень жарко, а ночью температура падает ниже 0°С. Это происходит потому, что песок обладает малой удельной теплоемкостью, поэтому быстро нагревается и охлаждается.

… что в пустынях днем очень жарко, а ночью температура падает ниже 0°С. Это происходит потому, что песок обладает малой удельной теплоемкостью, поэтому быстро нагревается и охлаждается.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector